过去 20 个月,影响全球医学界的 11 大 AI 事件



timg (2).jpg

人工智能尤其是深度学习技术的成熟使得市场上出现了很多AI辅助诊断产品。人类基因组测序技术的革新、生物医学分析技术的进步、以及大数据分析工具的出现,为病人提供更精准、高效、安全的诊断及治疗。

自从2016年阿尔法狗在围棋界全面战胜人类智慧,人工智能会不会战胜人类甚至取代人类的话题再次被摆在了风口浪尖。医学领域作为人工智能应用的热门领域也不可避免。一时间,AI与医生似乎站在了一个尖锐的对立面。

IEEE Spectrum在2018新年伊始推出专刊“AI vs Doctors”,统计了从2016年5月至今,AI在医疗领域的进展,并对比各大细分领域AI与人类医生能力差距。

下面,就带你看看在过去的一年里研究团队的重大突破,梳理一下在哪些疾病领域,AI已经可以与医生媲美,又在哪些方面还力有未逮。

image.png

吴恩达团队用CNN算法识别肺炎

仅在美国,每年就有超过100万成年人因为肺炎住院,5万人因为该病而死亡。

深度学习著名学者吴恩达和他在斯坦福大学的团队一直在医疗方面努力。吴恩达团队提出了一种名为CheXNet的新技术。研究人员表示:新技术已经在识别胸透照片中肺炎等疾病上的准确率上超越人类专业医师。

算法被称为CheXNet,它是一个121层的卷积神经网络。该网络在目前最大的开放式胸透照片数据集“ChestX-ray14”上进行训练。ChestX-ray14数据集包含14种疾病的10万张前视图X-ray图像。

image.png

CheXNet在使用胸透图像识别肺炎任务上的表现超过放射科医师的平均水平。在测试中,CheXNet与四名人类放射科医师在敏感度(衡量正确识别阳性的能力)以及特异性(衡量正确识别阴性的能力)上进行比较。放射科医生的个人表现以橙色点标记,平均值以绿色点标记。CheXNet输出从胸透照片上检测出的患肺炎概率,蓝色曲线是分类阈值形成的。所有医师的敏感度-特异性点均低于蓝色曲线。

AI预测心脏病发作和中风

2017年5月发表在《公共科学图书馆期刊》(PLOS One)上的一篇论文中显示,大约有一半的心脏病发作和中风发生在没有被标记为“有危险”的人群中。

目前,评估病人风险的标准方法依赖于美国心脏协会和美国心脏病学会制定的指导方针。医生们使用这些指导方针,将重点放在已确定的危险因素上,如高血压、胆固醇、年龄、吸烟和糖尿病。

英国诺丁汉大学的研究人员创建了一个AI系统来收集病人的日常医疗数据,并预测在10年内他们中的哪些人会发生心脏病或中风。与标准预测方法相比,人工智能系统正确预测了355例患者的命运。

研究人员Stephen Weng和他的同事们在全英国378256名患者身上测试了几种不同的机器学习工具。这些记录追踪了2005年至2015年患者及其健康状况,并包含了人口统计学、医疗条件、处方药物、医院访问、实验室结果等信息。

研究人员将75%的医疗记录录入他们的机器学习模型中,以找出那些在10年时间内心脏病发作或中风患者的显著特征。然后,Weng的小组对其余25%的记录进行了测试,以确定他们预测心脏病和中风的准确程度。他们还测试了记录子集的标准指南。

如果使用一个1.0表示100%准确度的统计数据,标准指南的得分为0.728。机器学习模型的范围从0.745到0.764,最好的分数来自于一种叫做神经网络的机器学习模型。

虽然机器评分听起来可能不是一个彻头彻尾的胜利,但用一串数字可以表明,AI在疾病预防方面所取得的优势:神经网络模型预测,在7404例实际病例中,有4998例患者心脏病发作或中风,超过标准指南355例方法。有了这些预测,医生可以采取预防措施,例如开药降低胆固醇。

AI扫描婴儿脑部以预测自闭症

2017年2月,北卡罗莱纳大学教堂山分校的一个研究小组发现,6个月大的孩子的大脑生长变化与自闭症有关。研究人员利用深度学习算法和数据来预测一个患自闭症高风险的孩子在24个月后是否会被诊断出患有自闭症。

image.png




上一篇:受气候变暖影响 科学家预言巧克力30年后灭绝
下一篇:法国生猪育种企业在安徽设总部 将设立研发中心